Competence in Solids

MaxxFlow HTC

Measurement of Bulk Solids for High Flow Rates

Page

CONTENTS

1.	System Overview	3
2.	Function	3
3.	Safety	4
	3.1 Regular Use	4
	3.2 Identification of Dangers	4
	3.3 Operational Safety	4
	3.4 Technical Progress	4
4.	Mounting and Installation	5
	4.1 Delivery Range	5
	4.2 Auxiliary	5
	4.3 Mounting of the Measuring Pipe	5
	4.4 Overview of the Connection of the Sensor Pipe and Evaluation Unit	7
	4.5 Use in Ex Hazard Array	8
5.	Electrical Connection	9
6.	Commissioning	10
7.	Standard Display of MaxxFlow HTC	12
8.	Menu Structure Main Menu MaxxFlow HTC	13
9.	System Adjustments in Detail	15
10.	Maintenance	23
11.	Warranty	23
12.	Trouble Shooting	23
13.	Technical Data	24

Thank you for your purchase. Please call for any questions or technical support 850-651-3388.

1. System Overview

A MaxxFlow HTC measuring system consists of the following components:

2. Function

- MaxxFlow HTC is a measuring system especially developed for the measurement of high flow rates under free fall conditions.
- MaxxFlow HTC is working according to the latest microprocessor technology. By special capacitive linking of an electromagnetic wave a homogeneous measuring field is produced in the pipe.
- The electromagnetic wave brought into the pipe is reciprocally acting with the solid particles. These signals are evaluated in frequency and amplitude.
- The measurement of the solid speed is done by means of correlation. Two sensors are used for the generation of the correlation signals.
- A complete measuring unit consists of the sensor (measuring pipe) and the evaluation unit.

Fig. 2: Coupling of the electromagnetic waves.

3. Safety

The measuring system MaxxFlow HTC was designed, built and tested to be safe and was shipped in safe conditions. Nevertheless persons or objects may be endangered by components of the system if these are operated in an inexpert manner. Therefore the operational instructions must be read completely and the safety notes must be followed.

In case of inexpert or irregular use, the manufacturer will refuse any liability or guarantee.

3.1 Regular Use

- The measuring system must be installed for measuring the flow rate only. Other usage and modifications of the measuring system are not permitted.
- Only original spare parts and accessories of SWR engineering must be used.

3.2 Identification of Dangers

• Possible dangers when using the measuring system are marked by the following symbols in the operating instructions:

Warning!

• This symbol in the operating instructions marks actions, which may represent a danger for life and limb of persons when carried out in an inexpert manner.

Attention!

All actions which may endanger objects are marked with this symbol in the operating instructions.

3.3 Operational Safety

- The measuring system must be installed by trained and authorised personnel only.
- Switch off the supply voltage for all maintenance, cleaning or inspection works on the tubes or on components of the MaxxFlow HTC. Follow the notes of the chapter maintenance.
- The components and electrical connections must be checked for damages regularly. If a damage is found, it is to repaired before further operation of the instruments.

3.4 Technical Progress

 The manufacturer reserves the right to adapt technical data to the technical progress without particular advance notice. If you have any questions, SWR engineering will be pleased to inform you on possible changes and extensions of the operating instructions.

4. Mounting and Installation

4.1 Delivery Range

- Measuring instrument in a field housing
- Sensor for installation into the pipe
- Operating Instructions

4.2 Auxiliary

- Appropriate wrench or ring wrench for screwing
- Tools for adjusting the wiring

4.3 Mounting of the Measuring Pipe

The sensor has to be mounted as follows:

- Determine the place of mounting on the pipe. On electronic housing or inclined pipes the sensor should be mounted from top.
- Follow the necessary distances of valves, bows, fans or cellular wheel sluices etc. and also other measurement devices like temperature and pressure etc. to the sensor (see fig. 3).

Fig. 3: Minimal distances of the sensor to pipe bends and baffles.

Attention!

Before installation it has to be checked that no fin, mismatch or seals are inside the pipe. It is important to remove any resistors affecting the flow.

Fig. 4: Mounting of the measuring tube.

It is possible to mount the evaluation unit up to 300 m away from the sensor. •

Fig. 5: Evaluation unit.

4.4 Overview of the Connection of the Sensor Pipe and Evaluation Unit

Fig. 6: Wiring of the sensor pipe and measuring instrument.

A maximum length of 300 m of the sensor cable should not be exceeded. A 4-wired shielded cable is needed between sensor and evaluation unit.

4.5 Use in Ex Hazard Array

Marking DustEx:

II 3D Ex tD A21
Zone 22: 0 °C ≤ Tprozess ≤ 80 °C

- Group of equipment 2
- Equipment category: 3
- For combustible mixtures from air and inflammable type of dust
- IP-Code 65
- Maximum surface temperature 84 °C with Ta = 60 °C

Marking GasEx:

$\langle \widehat{\epsilon} x \rangle$ II 3G Ex e IIC T4

- Group of equipment 2
- Equipment category: 3
- Zone 2
- For combustible mixtures from air and inflammable type of gas
- Allowable process temperature 0 to 80 $^{\circ}\mathrm{C}$
- Class of temperature T4
- Maximum surface temperature 84 °C with Ta = 60 °C

.

5. Electrical Connection

Evaluation Unit

Evaluation	Evaluation Unit			
Terminal N	lo	Connection		·
Connectior	n of supp	oly voltage		
L1 / +24 V		Input Supply Voltage 230	V / 50 Hz	
N / 0 V		Input Supply Voltage 230	V / 50 Hz	
PE		Protective Earth		
Connectio	ons			
Lout 1	+	Output 4 20 mA +	Flow rate	
I-OUL I	-	Output 4 20 mA -	(GND)	
Lout 2	+	Output 4 20 mA +	Density or vel	ocity
I-OUL Z	-	Output 4 20 mA -	(GND)	
NIA		NA		
INA		NA		
Min. /	NO	Potential-free Relay NO (Close)	
Max	С	Potential-free Relay CON	l (Common)	
Relais NC Potential-free Relay NC (Open)				
Dout	+	Digital Output +		
D-out	-	Digital Output -		
	A	RS 485 Interface Data A		
RS 485	В	RS 485 Interface Data B		
	GND	RS 485 Interface Ground		
D in 1	+	Digital Interface 1 (+)		
D-IIII	_	Digital Interface 1 (-)		
D in 2	+	Digital Interface 2 (+)		
D-IIIZ	-	Digital Interface 2 (-)		
	+	Supply Voltage 24 V (+)		Cable No. 1
Concor	-	Supply Voltage 24 V (-)		Cable No. 2
Sensor	Α	RS 485 Data A		Cable No. 3
	В	RS 485 Data B		Cable No. 4

* 230 V AC / 24 V DC resp. 230 V AC / 110 V AC / 24 V DC according to model

6. Commissioning

• For start-up the measurement system it is necessary to adjust the sensor to the local conditions. After switching on the power supply there is at least a warm-up time about 15 minutes required before any adjustment starts.

Please check again:

- The correct cabling between sensor and the evaluation unit.
- The correct adjustment of the sensor pipe.
- In case that despite these steps a successful measurement is impossible, please contact SWR.

Commissioning of MaxxFlow HTC

For start-up the sensor **has to be calibrated and parameterized to each product,** which will be measured. It is necessary to assign the mass flow to the display and initial value. The menu functions are mostly self-explaining. Following a short introduction to the overview:

By leaving the menu level and confirming the memory function all values changed are transferred.

Basic function	At least a two point calibration (normally zero and max) are sufficient for measuring the density function. The velocity measurement is firmly defined as an absolute measurement by the distance of the sensor plates and does not have to be calibrated.
Zero point	Start zero point calibration in no-flow condition with empty pipe.
Max point	By normal support the 2nd point is put on known flow and a working point calibration is carried out. The value can be corrected with later weighing, afterwards by fitting of the correction factor 2.2. With it the basic function of the device is given and the measuring values are indicated.
Analog output 1	Is firmly configured for the measuring of the flow rate. The measuring range is adjusted in menu point 3.1.1. 0 = 4 mA Max = 20 mA
Analog output 2	Is firmly configured for the measuring of the load. The measuring range is adjusted in menu point 3.2.1. 0 = 4 mA Max = 20 mA
Damping	The measuring range filter is used for the adjustment to slower working devices or for a continuous output of the analog output.

To enable MaxxFlow HTC for calculation a flow rate the following suppositions have to be given:

- Stable working velocity measurement resp. fixed velocity if a stable velocity measurement is not possible due to bad conveying conditions.
- Density measurement

As the operating point calibration needs a stable velocity measurement too, within the first commissioning you have to take care fort his. Therefore some hints:

- During flow the RMS values of the velocity signals have to be obvious higher than the noise level (NST, no signal threshold). There is no exact defined range, but, experienced values are about 1000 to 3000. If NST is now 500 or smaller a safe operating condition should be possible.
- If velocity still fails, caused of bad conveying conditions, fixed velocity has to be activated. Therefore the parameter "falling height" has to be set, the system will calculate with this value an averaged velocity of fall. Also important in this context is the NST level. This level will now work like switch, RMS values above NST level will switch velocity on, values below will switch velocity to zero.

7. Standard Display of MaxxFlow HTC

The standard display shows the actual flow rate as well as measuring values of density velocity and the totalizer value.

With four switch pads you are able to further information and configuration windows:

- **R** Reset totalizer, choose OK or NO
- **D** Density, further informations about density measurement, back with **M**
- **V** (Velocity), further information about speed measurement, back with **M** or press **S** for velocity configuration.
 - **S** V-Adjustment, various settings for speed measurement
 - 1. Threshold

This is the no signal threshold. It defines the noise level of RMS values (root mean square values) of the velocity signals, which will be suppressed for speed measurement. All values below will be ignored for speed measurement resp. with activated fix-velocity the output will switch to 0 m/s.

Possible values 1 - 65535, cancel with E (ESC)

- 2. Display of the actual RMS value of velocity signals
- 3. Fix-velocity

Setting of fix-velocity value, this will replace automatically the parameter falling height.

Possible values 1 - 99.99, cancel with E (ESC)

4. Vfix

Fix-velocity On / Off

T Display the electronics temperature

V-Adjustment	7	8	9
Threshold	4	5	6
230	1	2	3
Eff-value = 135	Е	0	┙

V-Adjustment	7	8	9
2.30 m/s	4	5	6
	1	2	3
	Ε	0	┙

8. Menu Structure Main Menu MaxxFlow HTC

Switch to main menu:

Press any pad of the touchscreen for about 5 s until the menu appears.

1. Measurement

2.

1.1 Ta	lg	Name (10 digits)
1.2 U	nit	Select: g / kg / t
1.3 Ti	me unit	Select: h / min / s
1.4 D	ecimal point	Position of decimal point
1.5 D	ensity	Range 1 3000 g/l
1.6 A	perture	Range 10 300 mm
1.7 D	rop height	Range 10 9999 mm
Calib	ration	
2.1	Sensor calibration	Adjusting the sensor's behaviour to material and mounting situation
	2.1.1 Zero point	for the empty sensor
	2.1.2 Operating point	with material flowing
	2.1.3 Full calibration	with filled sensor
2.2	Factor	Correction factor density, Range 0.01 9.99
2.3	Interpolation points	Amount of interpolation points for linearization (max. 3)
2.4	Interpolation table	Linearization characteristic
2.5	Min. Load	Suppression of conveying breaks during auto acquisition
2.6	Interpolation point 1	
	2.6.1 Raw value	Non linearized flow rate
	2.6.2 Calibrated	Linearized flow rate
	2.6.3 Auto Acquisition	Automatic calibration with a weighed mass
2.7	Interpolation point 2	Same as interpolation point 1
2.8	Interpolation point 3	Same as interpolation point 1

3.	Outpu	ıts	
	3.1	Flow rate	
		3.1.1 Value at 20 mA	End o
		3.1.2 Filter	Rang
		3.1.3 Calibration 4 mA	
		3.1.4 Calibration 20 mA	
	3.2	Density	
		3.2.1 Value at 20 mA	End o
		3.2.2 Filter	Rang
		3.2.3 Calibration 4 mA	
		3.2.4 Calibration 20 mA	
	3.3	Alarm	
		3.3.1 Туре	Selec
		3.3.2 Value	-10 te
		3.3.3 Delay	Rang
		3.3.4 Hysteresis	0.1
		3.3.5 Mode	Selec
		3.3.6 Alarm sensor fault	Selec
	3.4	Impuls Output	
		3.4.1 Mass / Pulse	Set th
4.	Digita	al inputs	
	4.1	Digital input 1	
		4.1.1 Function	Selec
		4.1.2 Direction	Selec
		4.1.3 Filter time	Rang

- 4.2 Digital input 2
 - 4.2.1 Function
 - 4.2.2 Direction
 - 4.2.3 Filter time

5. System

- 5.1 Baud rate
- 5.2 ModBus address
- 5.3 Contrast
- 5.4 Language

End of measuring range
Range: 0.1 99.9 s (standard: 1 s)

End of measuring range Range: 0.1 --- 99.9 s (standard: 1 s)

Select: MIN/MAX -10 to 110 % in physical units Range: 0.1 --- 99.9 s 0.1 --- 99.9 % Select: NO / NC Select: On / Off

Set the mass complying to one pulse

Select: Function (No / zero adjustment / full adjustment) Select: direct / inverted

Range: 0.1 --- 99.9 s

Select: Function (No / zero adjustment / full adjustment) Select: direct / inverted

Range: 0.1 --- 99.9 s

Select: 4800 / 9600 / 19200 / 38400 Bd Range: 1 --- 255 Contrast adjustment Select: D / F / E

9. System Adjustments in Detail

1. MEASUREMENT

1.1 Tag	Freely selectable notation, max. 10 characters. With	Measurement Tag ↑ MaxxFlow C ↓
1.2 Unit	Selection of the mass unit: g / kg / t With and select according to the display, with leave the menu without any change, with transfer the entry and leave the menu level.	Measurement Unit t C ←
1.3 Time Scale	Choose of the time unit. Choose: h / min / s / s per second / min per minute / h per hour With ♠ and ➡ select according to the display any change, with ➡ transfer the entry and lear	Measurement Time Scale h C c c t t t t t t t t t t t t t
1.4 Decimal Point	Adjust the digit in the display. With and shift the comma. is without function here and with transfer the entry and leave the menu level.	Measurement Decimal point 000.0 C ↓
1.5 Density	Set bulk density in g/l. Possible range 1 to 3000 g/l. Enter the value. With E leave without changes, with I transfer the entry and leave the menu level.	Measurement 7 8 9 Bulk density 4 5 6 1250 g/l 1 2 3 E 0

1.6 Aperture		Measurement	7	8	9
	Set value of pipe diameter.	Aperture	4	5	6
	Enter the value. With E leave without	150 mm	1	2	3
	changes, with 🖵 transfer the entry and		Ε	0	┙
1.7 Drop Height	Futer drep beight This will offer this d	Measurement	7	8	9
1.7 Drop Height		Magguromont			-
	Enter drop height. This will affect fixed- velocity value automatically	Drop Height	4	5	6
		265 ""	1	2	3
	changes, with 🖵 transfer the entry and		Ε	0	┙
	leave the menu level.				

2. CALIBRATION

2.1 Sensor Calibration

2.1.1 Zero Point

Start zero adjustment with empty pipe with ok. Cancel with no.

Zero Point Calibration in	progress	
Range	7	
Offset	378	
Density	22	

2.1.2 Operating Point

Enter known flow rate.

Enter the value. With E leave without changes, with \biguplus transfer the entry and go to the next window.

Change filter value with $\boxed{\mathbb{Z}}$, adopt adjustment values with $\boxed{\mathbb{H}}$.

Display during calibration procedure.

Sensor Calibration	7	8	9
E7 t/b	4	5	6
57 UII	1	2	3
@ 1.8 m/s	Ε	0	┙

Operating Point Adjustment at		C
5	7 t/h	
Raw Value =	101	
Filter	10 s	

Operating	Point
Calibratio	n in progress
Density	782

2.1.3 Full Calibration	Calibration with 100 % filled pipe in no-flow condition.	Full Point Calibration in progre	€SS			
		Density 782				
2.2 Factor		Calibration	7	5	2	9
	Correction factor affects directly the density	Factor	4	5	5	6
	0.01 to 9.99	1.0	1	2	2	3
	Default 1.0		Ε	()	Ļ
	Enter the value. With \textcircled{E} leave without changes, with \biguplus transfer the entry and leave the entry entry and leave the entry e	ne menu level.	L		1	
2.3 Interpolation Points		Calibration	7	8	3	9
	Set amount of required interpolation points.	Interpolation Points	4	5	5	6
		2	1	2	2	3
	Enter the value. With $[\underline{E}]$ leave without changes, with $[\underline{H}]$ transfer the entry and		Ε	()	┙
2.4 Interpolation Table	leave the menu level. Display of the calibrated points. Back with E.	Interpolation Table Raw 1. 57 2. 84	Calibra 57 t 84 t	ated /h /h		E
						_
2.5 Min. Load		Calibration		7	8	9
	auto acquisition.	10 0/2		4	5	6
	·	10 %0		1	2	3
	Leave the menu level			E	0	-

2.6 Interpolation Point 1

2.6.1 Raw Value

Manual interpolation. This is the non-linearized flow value.

Enter the value. With \boxed{E} leave without changes, with \boxdot transfer the entry and leave the menu level.

Internalation Daint 1	_		
	7	8	9
	4	5	6
57 V N	1	2	3
	E	0	┙
	L	•	

2.6.2 Calibrated

Manual interpolation. Linearized flow value.

Enter the value. With $[\underline{E}]$ leave without changes, with $[\underline{\leftarrow}]$ transfer the entry and leave the menu level.

2.6.3 Auto Acquisition

Enables a calibration by means of a weighed mass. The collection of data starts with entering this menu point, but only flow rates above the min. load value will be counted.

Finish with \leftarrow , enter the conveyed mass and confirm with \leftarrow . Press E to leave menu point without any changes.

Interpolation Point 1	7	8	9
57 t/b	4	5	6
57 011	1	2	3
	E	0	┙

Amount	7	8	9
F7 +	4	5	6
57 1	1	2	3
	Е	0	Ļ

2.7. / 2.8 Interpolation Points 2 / 3 same as interpolation point 1

3. OUTPUTS

3.1.1	at 20 mA	

Enter end of measuring range, this will comply to 20 mA.

Enter the value. With E leave without changes, with e transfer the entry and leave the menu level.

3.1.2 Filter

Adjustable damping for the flow rate. Range: 0.1 ... 99.9 s (standard 1 s).

Enter the value. With \boxed{E} leave without changes, with $\boxed{\leftarrow}$ transfer the entry and leave the menu level.

3.1.3 Calibration 4 mA

Value of current min. Adjust to the external measuring system (if display differs).

With $\leq and \geq adjust fast, with \leq and adjust slowly the current to 4 mA.$

With \overrightarrow{L} transfer the entry and leave the menu level, with \boxed{C} leave the menu without any change.

Flow Rate	7	8	9
Value at 20 mA	4	5	6
500 t/h	1	2	3
	Е	0	Ļ

Flow Rate Filter	7	8	9
1.0 s	4	5	6
	1	2	3
	E	0	Ļ

> |>>

С

3.1.4 Calibration 20 mA

Value of current max. Adjust to the external measuring system (if display differs).

With \leq and > adjust fast, with \leq and > adjust slowly the current to 4 mA.

With \square transfer the entry and leave the menu level, with \boxed{C} leave the menu without any change.

Flow Rate Calibration 20 mA

<

<

3.2. DENSITY

3.2.1 at 20 mA	Enter end of measuring range, this will comply to 20 mA. Enter the value. With E leave without changes, with I transfer the entry and leave the menu level.	Density Value at 20 mA 500 g/l	7 4 1 E	8 5 2 0	9 6 3 ↓
3.2.2 Filter	Adjustable damping for the density. Range: 0.1 99.9 s (standard 1 s). Enter the value. With \boxed{E} leave without changes, with \overrightarrow{e} transfer the entry and leave the menu level.	Density Filter Time 1.0 s	7 4 1 E	8 5 2 0	9 6 3 ↓

3.2.3 Calibration 4 mA

Value of current min. Adjust to the external measuring system (if display differs).

With \leq and \geq adjust fast, with \leq and \geq adjust slowly the current to 4 mA.

With \leftarrow transfer the entry and leave the menu

level, with C leave the menu without any change.

3.2.4 Calibration 20 mA

Value of current max. Adjust to the external measuring system (if display differs).

With \leq and \geq adjust fast, with \leq and \mid adjust slowly the current to 4 mA.

With \square transfer the entry and leave the menu level, with \boxed{C} leave the menu without any change.

> |>>

Density

<< <

Calibration 4.0 mA

19

С

3.3 ALARM

3.3.1 Type

Upper and lower limit value. Affects relay.

With \uparrow and \checkmark select according to your significance, with \bigcirc leave the menu without any change, with \leftarrow transfer the entry and switch to a deeper menu level.

Alarm	1
Alarm type Maximum	
waximum	С
	L

3.3.2 Value of Alarm

Threshold value. Range: -10 ... 110 % of the measuring range in physical units.

With \boxed{E} leave the menu without any change, with \swarrow transfer the entry and leave the menu level.

Alarm Alarm Value	7	8	9
90 t/b	4	5	6
30 011	1	2	3
	Е	0	Ļ

3.3.3 Delay

Threshold value how long the value must be over or under the limit until the alarm relay reacts. Range: 0.1 ... 99.9 s

Alarm Delay 1.0 s	7	8	9
	4	5	6
	1	2	3
	E	0	Ļ

With \boxed{E} leave the menu without any change, with $\boxed{-}$ transfer the entry and leave the menu level.

3.3.4 Hysteresis

Threshold value of the alarm. Range: 0 to 500 t/h

With [E] leave the menu without any change, with [-] transfer the entry and leave the menu level.

Alarm	7	8	9
85 t/b	4	5	6
05 011	1	2	3
	Е	0	Ļ

3.3.5 Mode

Choice of the contact work or interruption. NO - Working current NC- Static current

With 1 and 2 select according to the display, with $\fbox{2}$ leave the menu without any change, with $\biguplus{1}$ transfer the entry and leave the menu level.

3.3.6 Sensor Fault

On / Off Affects relay.

With \uparrow and \checkmark select according to the display, with \bigcirc leave the menu without any change, with \frown transfer the entry and leave the menu level.

Alarm	↑
Sensor Fault	+
on	С
	₊

3.4 Pulse Output

3.4.1 Amount of Pulses / Mass Unit

Input of the desired impulse number per indicated mass unity. Range: 0.01 ... 99.9

With $[\underline{E}]$ leave the menu without any change, with $[\underline{\leftarrow}]$ transfer the entry and leave the menu level.

Pulse Output	7	8	9
Mass / Puls	4	5	6
10.00	1	2	3
	Е	0	┙

4. DIGITAL INPUTS

4.1 Digital Input 1

4.1.1 Function

Select input function: None S-Zero / sensor zero adjustment S-Full / sensor full adjustment Possibility to start function with external signal.

Digital Input 1	1
e r	¥
3-ruli	С
	→

With \frown and \checkmark select according to the display, with \bigcirc leave the menu without any change, with \frown transfer the entry and leave the menu level.

4.1.2 Direction

Direct / inverted With ↑ and ↓ select according to the

display, with \bigcirc leave the menu without any change, with \bigcirc transfer the entry and leave the menu level.

Digital Input 1	1
direct	Ŧ
unect	С
	Ļ

	4.1.3 Filter	Dead time after activation (to debounce mechanical counter).	Digital Input 1 Filter 0.0 s	7 8 4 5	3 9 5 6
		With \boxed{E} leave the menu without any change, with \overrightarrow{H} transfer the entry and leave the menu level.		1 2 E (2 3) ←
	4.2 Digital Input 2				
	4.2.4	same as Digital Input 1			
5.	SYSTEM				
	5.1 Baud Rate	Indicating of the baud rate. Choose: 4800 / 9600 / 19200 / 38400 Bd With ▲ and ➡ select according to your significance, with C leave the menu without any change, with ➡ transfer the entry and leave the menu level.	System Baud Rate 9600		+ C V
	5.2 ModBus Address	Set 1 255 With \boxed{E} leave the menu without any change, with \swarrow transfer the entry and leave the menu level.	System Address 1	7 8 4 5 1 2 E 0	9 6 3 ←
	5.3 Contrast	Display contrast for a better legibility. With ≪ and >> adjust fast, with < and > adjust slowly to the contrast required. With → transfer the entry and leave the menu level, with C leave the menu without any change.	System Contrast	> >>	C
	5.4 Language	Indicating of the language. Choose: $D / F / E$ With \frown and \checkmark select according to your significance, with \bigcirc leave the menu without any change, with \frown transfer the entry and leave the menu level.	System Language D		↑ ↓ C ↓

11. Maintenance

Warning!

Danger of shock with opened housing!

- Switch off the supply voltage for all maintenance or repair works on the measuring system. The pipe must not be in operation during a sensor exchange.
- Repair and maintenance work must be carried out by trained or expert personnel only.

12. Warranty

Warranty is granted for one year starting from delivery date under the condition that the operating instructions have been followed, no interventions on the appliances have been made and the components of the system show no mechanical damage or wear resistance.

In case of a defect during the warranty period, defective components are repaired or are replaced free of charge. Replaced parts turn into the property of SWR. If desired by the costumer that the parts should be repaired or replaced in its factory, then the costumer has to take over the costs for the SWR-service staff.

SWR is not responsible for damage, which did not develop at the delivery article; especially SWR is not responsible for escaped profit or other financial damages of the customer.

13. Trouble Shooting

Warning!

The electrical installation must only be checked by expert personnel.

Problem	Cause	Measure
Measuring system	Power supply interrupted.	Check the power supply.
does not work.	Break of a cable.	Check the connecting cables for a possible break of a cable.
	Device defective.	Exchange the fuse in the field housing.
Measuring system outputs wrong values.	Calibration not correct.	Delete input signal correction, new calibration according to section 9.
Sensor error.	Wrong connection of the sensor.	Check the wiring.
	Sensor out of order.	Exchange sensor.
	vise the warranty claim expires!	

14. Technical Data

Sensor			
Housing:	Steel St52, powder painted (optional stainless steel 1.4541) NW 150 / 200, Flange DIN 2576		
Inner pipe:	Ceramic (Al ₂ O ₃)		
Protection category:	IP 65		
Operating temperature:	Sensor pipe: -20 + 120 °C Sensor electronic: 0 + 60 °C		
Max. working pressure:	1 bar (optional 10 bar)		
Working frequency:	88 kHz		
Transmitting power:	Max. 2 mW		
Weight:	Depending to model		
Dimensions:	NW 150: B = 420 mm, H = 290 mm NW 200: B = 480 mm, H = 310 mm		
Accuracy:	+/- 2 5 % in calibrated measuring range		
Evaluation Unit			
Power supply: 110 / 240 V AC 50 Hz (optional 24 V DC)			
Power consumption:	20 W / 24 VA		
Protection category:	IP 65 EN 60 529/10.91		
Operating temperature:	perature: -10 +45 °C		
Dimensions:	225 x 237 x 174 (W x H x D)		
Weight:	Approx. 2.5 kg		
Additional data:			
Cable glands:	3 x M16 (4.5 - 10 mm Ø)		
Terminal clamp wire size:	0.2 – 2.5 mm² [AWG 24-14]		
Current output signal:	2 x 4 20 mA (0 20 mA), Load < 700 Ω		
Alarm output			
Error output			
Data backup:	Flash memory		
Impulse output	Open collector - max. 30 V, 20 mA		
RS 485 interface	ModBus		

GTS, Inc. PO Box 799, Shalimar, FL 32579 Ph: 850-651-3388 Fx: 850-651-4777 Email: info@onthelevel.com Website: www.onthelevel.com

(All rights reserved.)